

Absorption Measure Distribution in Active Galactic Nuclei

T. P. Adhikari Nicolaus Copernicus Astronomical Center, Warsaw, Poland June 26, 2017

Collaborators Agata Różańska, Bozena Czerny, Krzysztof Hryniewicz

AGN Winds on the Georgia Coast , 25-29 June 2017

 Absorption Measure Distribution (AMD) in AGNs: definition and observational motivation

Photoionisation modelling of AMD

 Results from our modelling using TITAN (Dumont+ 2000) photoionisation code

• Summary

Absorption measure distribution (AMD) in AGNs : from observations

Holczer+ 2007

 \bullet AMD requires ξ and $N_{\rm H}$

$$AMD = dN_{\rm H}/d(\log \xi), \quad \xi = L/nR^2$$
$$N_{\rm H} = \int AMD \, d(\log \xi).$$

 N_{ion} is derived by fitting Gaussian profiles to the X-ray absorption lines in the observed spectra

$$N_{\rm ion} = A_z \int \frac{dN_{\rm H}}{d(\log \xi)} f_{\rm ion}(\log \xi) d(\log \xi)$$

• ξ and f_{ion} are computed from photoionisation models

Equivalent H- column densities

Importance of different ions, Fe in particular

Absorption measure distribution (AMD): Observation

Discontinuity in

the observed AMD

Observational evidence of Thermal instability (TI)? Holczer + 2007, Behar 2009

two AMD dips !

Absorption measure distribution (AMD): Modelling

• Broad band SED • Gas density n

• Metallicity Z • Column Density N_H

- Ionisation parameter, $\xi = L/nR^2$
- Solving the radiative transfer, ionisation equilibrium and thermal balance
- Main Codes: CLOUDY (Ferland +2013), TITAN (Dumont+ 2000), XSTAR (Kallman & Bautista 2001),...

absorption lines

AMD: models

RPC model in CLOUDY did not reproduce TI

Density dependence of AMD

for Mrk 509 SED, the position of AMD dip depends on density

RPC in Cloudy versus constant pressure in TITAN

TITAN (Constant total pressure)

• more accurate Accelerated Lambda Iteration (ALI) method

$$\mu \frac{dI_{\nu}}{d\tau_{\nu}} = I_{\nu} - \frac{j_{\nu}}{\kappa_{\nu} + \sigma_{\nu}} = I_{\nu} - S_{\nu}$$

 radiation pressure is computed from radiation field and goes into the gas structure directly

CLOUDY (RPC)

• Escape probability method of radiative transfer

$$dP_{gas}(au) = P_{rad} e^{- au} d au$$

 pressure induced by the trapped emitted radiation is not considered

Escape probability method versus ALI method (Dumont+ 2003)

Adhikari+ 2017, in preparation

Systematic study of AMD using TITAN

Adhikari+2017, in preparation

Systematic study of AMD using TITAN: normalisation and position of dip in AMD

N_H≥10²³ cm⁻²

 $N_H \sim 10^{21} - 10^{22} cm^{-2}$

SED - with strong X-ray illumination

Adhikari+ 2017, in preparation

normalisation is higher for SED with strong X-ray illumination

In case of SED with strong optical/UV component and for high density, free free heating dominates over the Compton heating

TITAN model: SED with with strong optical/ UV component, log $N_{\rm H}$ =22.48, log $n_{\rm H}$ =12 • Constant total pressure single component WA model explains the observed AMD in Mrk 509.

• Computations of AMDs with the constant pressure assumption for different SED components shows that the normalisation is higher for SED with strong X-ray illumination and weak optical/UV component.

• For the given SED, the position of AMD dip depends on the density of the absorber.

Różańska +08, Processes

