Timing properties of the X-ray quasiperiodic oscillations in the Lense-Thirring precession model

Piotr Życki

Nicolaus Copernicus Astronomical Center, Warsaw, Poland

"From the Dolomities to the event horizon: sledging down the black hole potential well", 3rd edition, 16-07-2015

NATIONAL SCIENCE CENTRE

X-ray QPO

Observed energy spectra of QPO

Disk emission is *not* present in the QPO spectra.

When time averaged spectra are <u>soft</u>, the QPO spectra are <u>harder</u> than the time averaged spectra.

Lense-Thirring precession model for low-f QPO

Formulated by Stella & Vietri (1998)

Recent hydrodynamical simulations suggest that the hot flow behaves (precesses) like a solid body.

Inner radius of the flow is determined by properties of the bending waves. It is approximately independent of the spin of the black hole. As a result the maximum precession frequency does not depend on the spin.

(C. Done, A. Ingram, C. Fragile)

The model

+

Connects the "standard" geometry of the transition between the hard-soft state with timing properties

-

- Can the torus really precess like a solid body?
- Unclear trigger of the QPO
- Does it require a misaligned spin and orbital angular momentum?
- Requires rotating black hole but does not give a possibility of determining a

Geometry

Two geometrical scenarios:

- 1. precession axis perp. to the outer disk
- Precession axis inclined to the outer disk (based on Bardeen-Peterson effect)

Geometry

geometrically thick torus; to be compared with the blue curve

coplanar config.

prec. axis perp. to the outer disk

prec. axis inclined to the outer disk

Concept of compactness used here!

Precession scenario 2 (precession axis *inclined* to the outer disk axis) precession axis *towards* the observer

Precession scenario **2** (precession axis *inclined* to the outer disk axis) precession axis *away from* the observer

QPO phase lags - observations

Phase difference between 2-5 keV and 13-18 keV QPO;

GRS 1915+105; RXTE observations

Simulations

Half opening angle of the torus – 15 deg Angle between system axis and precession axis – 15 degs

Inclination angle: 60 degs

Simulations

Lightcurves

1 keV and 30 keV light curves

Spectral variability

Spectral variability

Spectral variability

3 keV vs 30 keV; signal at f_{QPO} and its first harmonic

1 keV vs 30 keV; signal at f_{QPO} and its first harmonic

1 keV vs 20 keV; signal at f_{QPO} and its first harmonic

Precession axis at 90 degs angle wrt the observer

Spectral slope vs QPO frequency

In summary...

The Monte Carlo approach assumes a simple **uniform** (density, temperature) configuration.

It may be that the radial structure is crucial for explaining the details.