Probing the inner accretion flow with high-frequency X-ray variability

William Alston

Andy Fabian, Matt Middleton, Julija Markeviciute, Erin Kara, Michael Parker, Anne Lohfink, Ciro Pinto

NAM

06-07-15

Cambridge X-Ray Astronomy

Soft excess – broad iron line – Compton hump

Soft excess - broad iron line - Compton hump

Iron Kα (6.4 keV) and blurring of reflection spectrum can be used to constrain BH spin (see e.g. Reynolds & Fabian 2000)

Soft excess – broad iron line – Compton hump

Soft excess - broad iron line - Compton hump

But, AGN spectra are messy, particularly below 1 keV

=> Want to use spectral variability to understand variable emission components Iron Kα (6.4 keV) and blurring of reflection spectrum can be used to constrain BH spin (see e.g. Reynolds & Fabian 2000)

S×10, 4×10, 0×10,

Variable in all wavebands and on all timescales. Largest, most-rapid variations seen in X-rays

Variability amplitude as a function of temporal frequency

- 10 0 10 10 10 10 10 10 001 01 1 10 100

Propagation of mass accretion rate fluctuations

Modulation of independent frequencies (e.g. Arevalo & Uttley 2006)

Propagation of mass accretion rate fluctuations

Corona

Propagation of mass accretion rate fluctuations

rms-flux relation

Row Harris

AGN lags: Hard bands lag at low-f Soft bands lag at high-f - Interpreted as reverberation of primary continuum

QPOs in BH-XRBs

LFQPOs < 10 Hz

SIMS: A + B HIMS: C LHS: C HSS: C

Motta + 2011 See also Belloni & Stella 2014 HFQPOs > 30 Hz

VH/I states

Remillard & McClintock 2006

QPOs in BH-XRBs

LFQPOs

If accretion process is scale invariant then we expect to see both HF and LF QPOs in AGN

Motta + 2011 See also Belloni & Stella 2014

Remillard & McClintock 2006

QPO in RE J1034+396 (NLS1)

Ob 1: 90 ks

- 2.6 x 10⁻⁴ Hz (1 hour)
- $L_{Bol} / L_{Edd} \sim 1-4$
- HFQPO (but LFQPO not ruled out)
- Only seen in full (0.3-10 keV) in Obs 1

Gerlinski + 2008 See also Vaughan 2010

Middleton + 2011

XMM observations (0.3-0.8 and 1-4 keV)

QPO present in 1-4 keV band in the 5 low flux/ spectrally-harder observations

WA, Markeviciute, Kara, Fabian, Middleton, 2014, MNRAS, 445, 16

RE J1034+396 hard band PSD

Now 250 ks of QPO data

Accretion timescales:

XRBs: ~ 1000 ct/s (M_{bh} ~ 10)

AGN: ~ 10 ct/s (M_{bh} ~10⁶)

But, characteristic timescale of variability scales with M_{bh} (10⁵)

Therefore, factor ~1000 more counts per characteristic timescale in AGN

RE J1034+396 time lags

Time delay [s]

Soft lag at QPO (see also Zoghbi + 2011)

Evidence for Fe K reverberation from QPO

Markeviciute, WA, et al, *in prep*

Uttley et al 2014

Phase resolving the QPO

Following Tomsick & Kaaret (2001):

- Filter light curve with filter width +/- 20% QPO freq.
- Find minima and slice into X equally space phase bins between minima. Sum over phase bins.

Markeviciute, WA, Kara, Fabian & Middleton, in prep

Phase resolved spectroscopy

A QPO in MS 2254.9-3712 (NLS1)

Alston + 2015, MNRAS, 449, 467

Cross-Spectral products between soft (0.3-0.7) and hard (1.2-5.0) bands

Time delays as a function of energy at a given frequency

Positive lag indicates lag of comparison band vs total energy band (minus comparison band)

Mean and *rms*-spectra

Mean spectrum well described by two absorbed PL (Γ~2.8; 1.5) plus neutral reflection

Hard QPO spectral variability observed in BHBs and RE J1034 (e.g. Belloni 2010 review)

Principle components analysis (PCA)

NGC 4051

Variability is broken down into set of variable spectral components.

Alston + 2015, MNRAS, 449, 467

Parker + 2014

MS 22549 QPO identification

- $M_{\rm BH} \simeq 0.4 1 \times 10^7 M_{\rm sun}$
- Broadband noise present
- High coherence in BB noise
- 3:2 harmonic (maybe)
- ~5 % rms
- Consistent with HFQPOs observed in BHBs
- LFQPO: *M*_{BH} < 1 x 10⁶ *M*_{sun}

XMM-Newton campaign underway to confirm the QPO

Summary

- □ Fast variability probes the inner accretion flow
- QPOs important probe of the inner accretion flow
 - More counts/timescale in AGN
- 1 hr QPO detected in 5 low-flux/spectrally harder observations of RE J1034+396
- 2 hr QPO detected in MS 2254.9-3712
 - Shows similar spectral-timing properties to RE J1034
 - Consistent with being HFQPO
- □ Reverberation lag seen at f_{QPO}
 - Constraint for QPO models
- Evidence for two independent variability processes
 - Reverberation from faster variability component

Cross Spectrum

$$x(t), y(t) \longrightarrow X(f), Y(f)$$

$$C_{xy} = X^*(f)Y(f)$$

$$= |X||Y|e^{i(\phi_y - \phi_x)}$$

$$\gamma^2(f) = \frac{|\langle C_{xy}(f) \rangle|^2}{\langle |X(f)|^2 \rangle \langle |Y(f)|^2 \rangle}$$

$$\phi(f) = \arg(\langle C_{xy}(f) \rangle)$$

$$\tau(f) = \frac{\phi(f)}{2\pi f}$$

e.g. Vaughan & Nowak (1997)

PG 1116+215: another QPO detection? (2.6 σ)

Parker et al 2015

What about other Seyferts?

$$Lor(\nu) = N \frac{\sigma/2\pi}{[(\nu - \nu_0)^2 + (\sigma/2)^2]}$$

Ark 564 (NLS1)

PSD modelled with two broad Lorentzians

Hard lags seen at low f, with switch to soft lag at high frequency Lorentzian

McHardy et al (2007)

PSD modelled with PL + Lor See soft lag at frequency where Lor peaks Sample of 8 objects

Soft lag vs Lorentzian

Variability power vs λ_{Edd}

Ratio of integrated power in Lorentzian relative to that in PL noise

$$\lambda_{\rm Edd} = L_{\rm Bol} / L_{\rm Edd}$$

 $\begin{array}{l} \text{Variability power in} \\ \text{Lorentzian increases} \\ \text{with } \lambda_{\text{Edd}} \end{array}$

Phase resolved spectroscopy

Modulation of heating rate with no modulation of cooling rate

Markeviciute, WA, in prep

Zycki & Sobolewska 2005