### **QPOs in AGN**

### **William Alston**

Andy Fabian, Matt Middleton, Julija Markeviciute, Michael Parker, Erin Kara, Anne Lohfink, Ciro Pinto





### **QPOs in BH-XRBs**

**LFQPOs** 



SIMS: A + B HIMS: C LHS: C HSS: C

Motta + 2011 See also Belloni & Stella 2014 **HFQPOs** 



**VH/I states** 

Remillard & McClintock 2006

### **QPOs in BH-XRBs**

**LFQPOs** 



**HFQPOs** 

# If accretion process is scale invariant then we expect to see both HF and LF QPOs in AGN

Motta + 2011 See also Belloni & Stella 2014

Remillard & McClintock 2006

# QPO in RE J1034+396 (NLS1)

Ob 1: 90 ks





- 2.6 x 10<sup>-4</sup> Hz (1 hour)
- Only seen in Obs 1 (0.3-10 keV)
- No QPO in 0.3-10 keV band (M11)
  - Evidence for its presence in covariance spectra

Gerlinski + 2008 See also Vaughan 2010

Middleton + 2011

#### XMM observations (0.3-0.8 and 1-4 keV)



### QPO present in 1-4 keV band in the 5 low flux/ spectrally-harder observations



WA, Markeviciute, Kara, Fabian, Middleton, 2014, MNRAS, 445, 16

### **Energy resolved PSDs**



### **RE J1034+396 time lags**



Markeviciute, WA, et al, in prep

Uttley et al 2014

5

10

10

# A QPO in MS 2254.9-3712 (NLS1)



Alston + 2015, MNRAS, 449, 467



### Cross-Spectral products between soft (0.3-0.7) and hard (1.2-5.0) bands





Time delays as a function of energy at a given frequency

Positive lag indicates lag of comparison band vs total energy band (minus comparison band)



### Mean and rms-spectra



Mean spectrum well described by two absorbed PL (Γ~2.8; 1.5) plus neutral reflection

Hard QPO spectral variability observed in BHBs and RE J1034 (e.g. Belloni 2010 review)

Alston + 2015, MNRAS, 449, 467

#### Structure seen at $f_{\rm QPO}$ in softer bands



Reprocessing of hard band QPO variability? Soft lags observed Same primary continuum QPO? No lag with 1.2-5 observed

Alston + 2015, MNRAS, 449, 467

### Principle components analysis (PCA)

NGC 4051



0.5

Spectrum is broken down into set of variable components.

Alston + 2015, MNRAS, 449, 467

**Parker + 2014** 

5

10

2

Energy (keV)

## **QPO** identification



- $M_{\rm BH} \simeq 0.4 1 \times 10^7 M_{\rm sun}$
- Broadband noise present
- High coherence in BB noise
- 3:2 harmonic (maybe)
- ~5 % rms
- Consistent with HFQPOs observed in BHBs
- LFQPO:  $M_{\rm BH} < 1 \times 10^6 M_{\rm sun}$

AGN have more counts per characteristic timescale than BHBs. Better probe of QPO mechanism

### **Comparisons with XRBs**

#### RE J1034+396

- $m_{\rm E} = 1-4$
- 67 Hz QPO in GRS 1915 (Middleton & Done 2010)
- But soft lag seen in 35 Hz QPO (Mendez et al 2013)



#### MS 22549-3712

- $m_{\rm E} = 0.25 1$
- ~100 Hz for 10 Msun BHXRB

### Summary

QPOs important probe of the inner accretion flow

- More counts/timescale in AGN
- 1 hr QPO detected in 5 low-flux/spectrally harder observations of RE J1034+396
- 2 hr QPO detected in MS 2254.9-3712
  - □ Shows similar spectral-timing properties to RE J1034
  - Consistent with being HFQPO
- □ Reverberation lag seen at  $f_{\text{QPO}}$ 
  - Constraint for QPO models
- Both accreting at m<sub>E</sub> consistent with very high and intermediate states in BH XRBs



Zhou + 2014

#### PG 1116+215: another QPO detection?

