Hot Coronae in local AGN: present status and future perspectives

Andrea Marinucci

F. Tamborra, R. Middei, G. Matt, M. Dovčiak, S. Bianchi, A. Tortosa

Alsatian Conference on X-ray polarimetry Strasbourg, Nov 14th 2017

One of the main open problem for AGN is the nature of the primary X-ray emission.

It is due to Comptonization of soft photons, but the geometry, optical depth and temperature of the emitting corona are largely unknown.

Most popular models imply E_{cut} =2-3x kT_e (Petrucci+00,+01), so measuring E_{cut} helps constraining Comptonization models.

Before the launch of NuSTAR, we only had a handful of results based on non-focusing, and therefore strongly background-dominated, satellites (BeppoSAX-PDS, Suzaku HXD-PIN, INTEGRAL, Swift-BAT)

Source	Ref.	Г	E_c	$log(M_{bh}/M_{\odot})$	Ref.	L_{bol}/L_{Edd}	$L_{2-10keV}$	F _{2-10keV}	kT _e	τ	geom.	model
			[keV]				ergs s ⁻¹	erg cm ⁻² s ⁻¹	[keV]			
NGC 5506	1	1.91 ± 0.03	720^{+130}_{-190}	8.0 ± 0.2	(A)	0.006	0.053	6.2	440^{+230}_{-250}	$0.02^{+0.2}_{-0.01}$	slab	COMPTT
									440^{+230}_{-250}	$0.09^{+0.2}_{-0.01}$	sphere	COMPTT
MCG 5-23-16	2	1.85 ± 0.01	170 ± 5	7.7 ± 0.2	(B)	0.058	0.18	10.4	30 ± 2	1.2 ± 0.1	slab	COMPTT
									25 ± 2	3.5 ± 0.02	sphere	COMPTT
SWIFT J2127.4	3-4	2.08 ± 0.01	180^{+75}_{-40}	7.2 ± 0.2	(J)	0.136	0.14	2.9	70_{-30}^{+40}	$0.5^{+0.3}_{-0.2}$	slab	COMPTT
									50^{+30}_{-25}	$1.4^{+1.0}_{-0.7}$	sphere	COMPTT
IC4329A	5-6	1.73 ± 0.01	185 ± 15	6.99 ± 0.3	(H)	1.291	0.56	12.0	37 ± 7	1.3 ± 0.1	slab	COMPTT
									33 ± 6	3.4 ± 0.5	sphere	COMPTT
3C390.3	7	1.70 ± 0.01	120 ± 20	8.4 ± 0.4	(H)	0.241	1.81	4.03	40 ± 20	$3.3^{+1.3}_{-2.8}$	sphere	COMPTT
3C382	8	1.68 ± 0.03	215^{+150}_{-60}	9.2 ± 0.5	(D)	0.048	2.34	2.9	330 ± 30	0.2 ± 0.02	slab	COMPTT
GRS 1734-292	9	1.65 ± 0.05	53 ± 10	8.5 ± 0.1	(L)	0.038	0.056	2.9	12 ± 1	2.9 ± 0.2	slab	COMPTT
									$12^{+1.7}_{-1.2}$	6.3 ± 0.3	sphere	COMPTT
NGC 6814	10	1.71 ± 0.04	135^{+70}_{-35}	7.0 ± 0.1	(C)	0.003	0.021	0.2	45^{+100}_{-20}	$2.5^\dagger\pm0.5$	sphere	NTHCOMP
MCG +8-11-11	10	1.77 ± 0.04	175^{+110}_{-50}	7.2 ± 0.2	(E)	0.754	0.51	5.6	60^{+110}_{-30}	$1.9^\dagger\pm0.4$	sphere	NTHCOMP
Ark 564	11	2.27 ± 0.08	42 ± 3	6.8 ± 0.5	(H)	1.313	0.39	-	15 ± 2	$2.7^\dagger\pm0.2$	sphere	NTHCOMP
PG 1247+267	12-13	2.35 ± 0.09	90^{+130}_{-35}	8.9 ± 0.2	(M)	0.024	0.79	0.05	46^{+60}_{-20}	$1.4^\dagger \pm 0.3$	sphere	NTHCOMP
Ark 120	14-15	1.87 ± 0.02	180^{+80}_{-40}	8.2 ± 0.1	(H)	0.085	0.92	2.3	-	-	-	-
NGC 7213	16	1.84 ± 0.03	> 140	8.0 ± 0.2	(G)	0.001	0.012	1.3	230^{+70}_{-250}	0.2 ± 0.1	sphere	COMPPS
MCG 6-30-15	17-18	2.06 ± 0.01	> 110	6.4 ± 0.1	(E)	0.238	0.056	5.5	-	-	-	-
NGC 2110	19	1.65 ± 0.03	> 210	8.3 ± 0.2	(K)	0.035	0.35	12.5	190 ± 130	0.2 ± 0.1	slab	COMPTT
Mrk 335	21-22	2.14 ± 0.03	> 174	7.2 ± 0.1	(H)	0.284	0.18	1.9	-	-	-	-
Fairall 9	20	1.95 ± 0.02	> 242	8.1 ± 0.7	(H)	0.054	0.60	2.9	-	-	-	-
Mrk 766	17-23-24	2.22 ± 0.03	> 441	6.3 ± 0.1	(I)	1.254	0.046	1.4	-	-	-	-
PG 1211+143	26	2.51 ± 0.2	> 124	8.2 ± 0.2	(H)	0.047	0.35	1.0	-	-	-	-

So far, about twenty sources have been observed and their primary continua investigated.

Tortosa+, in prep.

(Middei+; Tortosa+, in prep.)

Coronal parameters (Swift J2127,4+5654)

Coronal parameters (Swift J2127.4+5654)

Using compTT (Titarchuk+94) with two different geometries we get:

The T-kT_e diagram (in a slab geometry)

1. How can we translate the commonly derived photon indices and high-energy cutoff values into optical depths and electronic temperatures?

2. Is there a more populated region in the τ -kT parameter space?

A MC code for Comptonization in Astrophysics (MoCA)

Spectrum (disc 6-500, mdot01, MBH10) SLAB tau1 kT100 - logN - 400 bins

unscattered 1 scatt 2 scatt 3 scatt 4 scatt 5 scatt >5 scatt total

100.00000000

1.00000000

0.01000000

0.00010000

0.00000100

0.00000001

0.01

0.1

10

1

Energy [keV]

100

1000

I(E) [arbitrary units]

Assumptions and advantages: 1. Shakura-Sunyaev neutral accretion disc 2. Extended coronae 3. Single photon approach 4. Polarization signal

7/15

Tamborra+, submitted

We simulate a coronal configuration and fit it with a cutoff powerlaw, retrieving the corresponding values of E_c and Γ

Middei+, in prep.

8/15

 $M_{bh}=10^7 M_{sun}$; $\dot{m}=1$, $kT_e=100 \text{ keV}$; $\tau=1$

MoCA in action

We simulate a coronal configuration and fit it with a cutoff powerlaw, retrieving the corresponding values of E_c and Γ

The T-kT_diagram in AGN

The region of the observed parameters ranges between kT=50-100 keV and τ =0.5-2.25

The t-kl_diagram in AGN

The region of the observed parameters ranges between kT=50-100 keV and τ =0.5-2.25

The t-kT_e diagram in AGN

We can define the most populated region in both slab and spherical geometries but we cannot discriminate between the two.

Polarisation sensitivity	1.8 % MDP for 2x10 ⁻¹⁰ erg/s cm ² (10 mCrab) in 300 ks (CBE)					
Spurious polarization	<0.3 %					
Number of Telescopes	3					
Angular resolution	28" (CBE)					
Field of View	12.9x12.9 arcmin ²					
Focal Length	4 meters					
Total Shell length	600 mm					
Range Shell Diameter	24 shells, 272-162 mm					
Range of thickness	0.16-0.26 mm					
Effective area at 3 keV	854 cm ² (three telescopes)					
Spectral resolution	16% @ 5.9 keV (point source)					
Timina	Resolution <8 µs					
Timing	Accuracy 150 µs					
Operational phase	2 yr					
Energy range	2-8 keV					
Background (req)	5x10 ⁻³ c/s/cm2/keV/det					
Sky coverage, Orbit	50 %, 540 (0°)					

IXPE (Imaging X-ray Polarimetry Explorer)

> Selected by NASA (SMEX) for a launch in early 2021

P.I.: Martin Weisskopf_(MSFC)

It will re-open the X-ray polarimetry window!

Since I is proportional to the intensity of the polarized component and Q is related to the angle of polarization their ratio contains information about the polarized signal after each scattering.

We focus on the brightest Seyfert 1 and 2 objects of the sample (NGC 2110 and IC 4329A):

We focus on the brightest Seyfert 1 and 2 objects of the sample (NGC 2110 and IC 4329A) and retrieve observing times to obtain an MDP=2%: this should suffice in distinguishing between the two models.

Conclusions

Simulations with MoCA have showed that the observed cutoff energies and photon indices occupy a well-defined region in the τ-kT diagram

X-ray polarimetry will be the next tool to reveal the geometry of the coronae in AGN

We are currently working on running more simulations and trying different geometries.

