

StrongGravity - probing strong gravity by black holes across the range of masses

Michal Dovčiak on behalf of StrongGravity consortium

From the Dolomites to the event horizon: Sledging down the Black Hole potential well (4th edition)

Sesto Val Pusteria, Italy, 13/7/2017

EU 7th Framework Programme (2007-2013)

Space Call 5 – FP7-SPACE-2012-1 (€ 84 mil.)

- Activity 9.2.: Strengthening the foundations of Space science and technology
- Area 9.2.1: Research to support space science and exploration
- **Topic** SPA.2012.2.1-01: Exploitation of space science and exploration data (8 mil. €)
- → collaborative project small or medium-scale focused research project (at least 3 partners, 2 mil. €)

Call date: 20/7/2011

Submission deadline: 23/11/2011

Altogether 6 Space calls in FP7 (one per year: 2008-2013)

Horizon 2020 – only 2 relevant calls in 2014-2017:

- \rightarrow COMPET-5-2015 and COMPET-4-2017 (one every other year)
- → research and innovation action budget 1.5 mil. \in (out of 6 mil. \in)

StrongGravity (2013-2017)

Title: Probing Strong Gravity by Black Holes Across the Range of Masses

- http://stronggravity.eu
- 5-year project (proposal planning in 2011, evaluation and negotiations in 2012)
- EU contribution: € 1 989 320
- Overall budget: € 2 644 556
- Number of partners: 7
- Number of researchers (including postdocs): 30 (on average)

Participating Institutions:

- Astronomical Institute of the CAS (AsU), Czech Republic \rightarrow coordinator
- Centre National de la Recherche Scientific (CNRS), France (Observatoire astronomique de Strasbourg, Université de Strasbourg)
- Università degli Studi Roma Tre (UNIROMA3), Italy
- Institute of Astronomy, University of Cambridge (UCAM), UK
- Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Spain (Centro de Astrobiología)
- I. Physikalisches Institut, Universität zu Köln (UCO), Germany
- Centrum Astronomiczne im. M. Kopernika, PAN (CAMK), Poland

StrongGravity aims

What do we study?

- Astrophysical black holes and their close environment
 - \rightarrow supermassive Black Holes residing in AGN (radio quite)
 - \rightarrow the supermassive Black Hole in the centre of the Milky Way
 - \rightarrow stellar-mass Black Holes in the binary systems of our Galaxy

Our goal:

- → develop new analytical tools (General Relativity, radiative transfer effects)
- → apply these new tools to observational data from archives of European space-based and ground-based observatories or obtained in new observational campaigns
- → actively help in planning future missions and use our tools for simulations of observations to estimate their capabilities

StrongGravity aims

• On the theoretical side:

SMBHs \rightarrow improvement in modeling of all spectral components

- \rightarrow the primary component: special rel. Comptonization code
- $\rightarrow\,$ the refl. component: different ionization states, modeling of lags between primary and reflected emission
- \rightarrow the iron line emission: realistic emissivity laws
- → the warm absorber: treating absorption and emission lines self-consistently
- $\rightarrow\,$ develop and use 3D polarization code for modeling the light curves and polarized emission of Sgr A*

$GBHs \rightarrow improvement on present disc emission models$

- \rightarrow disc self-irradiation
- \rightarrow advection processes
- \rightarrow properties of the disc corona
- \rightarrow refine QPO models
- \rightarrow GR effects correctly accounted for in all of these models

StrongGravity aims

- On the observational side:
 - → explore the public archives and propose new observations with the current and near-future X-ray facilities
 - \rightarrow to solve the ambiguity between reflection and absorption model
 - \rightarrow determine more robustly the iron line profile and the spin
 - \rightarrow search for time lags between primary and refl. components
 - → study timing and polarisation properties of Sgr A* in different wavebands
 - \rightarrow measure the spin with different methods in GBHs

Analytical tools developed

Available (almost) at *http://stronggravity.eu/results/models-and-data*:

- KYN non-axisymmetric version of several KY general relativistic XSPEC spectral models,
- KYNrefrev XSPEC model for X-ray reverberation modelling in AGN (see also Maria's talk),
- SLIMBH XSPEC model for thermal spectra of slim disks around stellar mass black holes,
- **SLIMBHirr** spectral model of spectra of self-irradiated accretion disks,
- SLIMULX XSPEC model for thermal spectra of slim disks around stellar mass black holes in super-Eddington regime (see also Michal's talk),
- LFQPO comptonization Monte Carlo code for modelling LFQPO by comptonization of disk seed photons in a precessing corona (see also Piotr's talk),
- **STOKES** Monte Carlo radiative transfer code for modeling multi-wavelength polarization designed to model astrophysical objects of various geometries that considers polarization induced by electron and dust scattering *(see also Frederic's talk)*,
- MOCA fully relativistic Monte Carlo code to compute the spectrum and polarization of the continuum emitted in a corona of hot electrons via inverse Compton of UV/Soft X-ray photons emitted from the accretion disc (see also Francesco's talk),
- **MAGSPOT** polarized lightcurves for a toy model of magnetized spot orbiting a black hole,
- **Cpwabs** XSPEC model for transmitting spectra through a constant pressure warm absorbing material layer *(see also Agata's talk)*,
- **SIM5** general propose library for relativistic raytracing.

Reflection from black-hole accretion discs – tools

- **KYN** package of *non-axisymmetric* models for XSPEC: (available at *https://projects.asu.cas.cz/stronggravity/kyn*)
 - relativistic fluorescent line models:
 - **KYNrline** broken power-law emissivity,
 - KYNrlpli lamp-post geometry,
 - relativistic convolution models:
 - KYNconv broken power-law emissivity,
 - KYNconvlp lamp-post geometry,
 - relativistic reflection models:
 - **KYNIpcr** lamp-post geometry, neutral disc (local emissivity computed by NOAR),
 - **KYNrefionx** lamp-post geometry, ionised disc (based on REFLIONX),
 - **KYNxillver** lamp-post geometry, ionised disc (based on XILLVER),
 - relativistic thermal radiation models:
 - **KYNbbphen** radial power-law temperature profile,
 - **KYNbb** Novikov-Thorne temperature profile with colour correction factor.

KYNrefionx

kynre Ross	fionx: & Fabia	initializir an (2005), M	ng reflionx. MNRAS, 358,	mod table 211	es				
ide: initializing data tables, please wait Ref.: Dovciak M., Karas V. & Yaqoob T. ApJS July 2004, Volume 153, Issue 1, pp. 205-221									
initializing finished									
Model kyprefiony<1> Source No : 1 Active/Off									
Model par	Model comp	Component	Parameter	Unit	Value				
1	1	kynrefionx	a/M	GM/C	1.00000	+/- 0.0			
2	1	kynrefionx	theta_o	deg	30.0000	+/- 0.0			
3	1	kynrefionx	rin	GM/c^2	1.00000	frozen			
4	1	kynrefionx	ms		1	frozen			
5	1	kyprefionx	rout	GM/CA2	400.000	frozen			
7	1	kynrefiony	dobi	deg	360 000	frozen			
8	1	kynrefionx	M/M8	ucy	1.00000	+/- 0.0			
9	1	kynrefionx	height	GM/c^2	3.00000	frozen			
10	1	kynrefionx	PhoIndex		2.00000	frozen			
11	1	kýnrefionx	L/Ledd		1.00000E-03	+/- 0.0			
12	1	kynrefionx	Np:Nr		0.0	frozen			
13	1	kynrefionx	density		1.00000	+/- 0.0			
14	1	kynrefionx	den_prof		0.0	+/- 0.0			
15	1	kynrefionx	abun		1.00000	+/- 0.0			
16	1	kynrefionx	alpha	GM/c^2	-6.00000	+/- 0.0			
17	1	kynrefionx	beta	GM/c^2	0.0	+/- 0.0			
18	1	kynrefionx	rcloud	GM/c^2	0.0	+/- 0.0			
19	1	kynrefionx	zshift		0.0	frozen			
20	1	kynrefionx	TIMD		0.0	frozen			
21	1	kynrefionx	tab		2	frozen			
22	1	kynrefiony	SW ntable		2 0000	frozen			
23	1	kynrefiony	nrad		500.0000	frozen			
25	1	kynrefionx	division		1.00000	frozen			
26	1	kynrefionx	nphi		360.000	frozen			
27	1	kynrefionx	smooth		1.00000	frozen			
28	1	kynrefionx	nthreads		2.00000	frozen			
29	1	kynrefionx	norm		1.00000	+/- 0.0			

KYN – properties:

- emission from a hot spot (section of the accretion disc)
- obscuration by a spherical cloud
- BH spin range: -1 < a < 1
- multiple computing threads possible

KYNrefrev

Some additional notes:

- the ionisation of the disc is set for each radius according to the amount of the incident primary flux and the density of the accretion disc,
- thermal reverberation is included, i.e. increase in the disc temperature due to partial thermalisation of the illuminating flux

Output of the code:

- lag as a function of frequency between given energy bands,
- lag as a function of energy for different frequencies,
- response to the flash:
 - integrated spectrum of the response,
 - light curve for a given energy band,
 - Fourier transform products (Re, Im, amplitude, phase, lag),
- all the above may include only the response or primary as well

KYNrefrev

Theoretical lag-frequency model

Reprocessing in the disc

Monte Carlo computations of re-processing in the disc illuminated by power-law radiation with Stokes/Titan (examples for Γ =2, ξ =200):

Reprocessing in the disc

· azimuthal dependence is also included

Reprocessing in the disc

polarisation for unpolarised illumination is computed as well

3D polarisation modelling of blob

Image of the hotspot while it is behind the black hole. Due to gravitational lensing it can be seen as an Einstein ring.

The green lines represent the polarization - the length represents the polarization degree and the orientation the polarization angle.

- AGN spectra (Marinucci, Matt)
 - black hole spin measurements
 - properties of corona (electron temperature from power-law cut-off, optical thickness from photon index using MOCA – still ongoing effort)
 - importance of NuSTAR data
- AGN lags (Kara, Fabian, Alston)
 - lags measured in several sources (lags vs. frequency and energy)
 - Lags observed also in broad iron line energy band
 - lags vs. energy found to be similar to reflection spectrum
 - drop in hard lags at very low frequencies (additional soft componnet due to absorption?)
 - lags confirmed by NuSTAR in Compton hump
 - lags in QPO
 - long observational campaign proposals (IRAS 13224-3809)

Radio quite AGN observed by NuSTAR

Target	Spin	Data	Reference
IH0707-495	> 0.988	XMM-Newton/NuSTAR	Kara et al. (2015)
Ark I20	~0.5	XMM-Newton/NuSTAR	Matt et al., 2014
Fairall 9	0.973 ± 0.003	XMM-Newton/NuSTAR	Lohfink et al. (2016)
MCG-6-30-15	$0.91\substack{+0.06\\-0.07}$	XMM-Newton/NuSTAR	Marinucci et al., 2014a
Mrk 335	> 0.9	Swift/NuSTAR	Parker et al., 2014
NGC 1365	> 0.97	XMM-Newton/NuSTAR	Risaliti et al., 2013 Walton et al., 2014
NGC4151	> 0.9	Suzaku/NuSTAR	Keck et al. (2015)
SWIFT J2127.4	$0.58^{+0.11}_{-0.17}$	XMM-Newton/NuSTAR	Marinucci et al., 2014b

Lags in AGN QPO

RE J1034+396

MS 22549-3712

Observations

Sgr A*

- Polarised light from Sgr A* in the NIR K-band (Shahzamanian et al. A&A 2015)
- Simulating the emission of SgrA* with an orbiting hotspot model (Karssen et al., submitted)
- NIR observations (also polarisation detected) and modelling of G2/DSO (Valencia-S et al. ApJ 2015, Shahzamanian et al. A&A 2016, Zajacek et al. A&A 2014)

• GBHBs

- spin determination with continuum method vs. reflection (Kohlemainen et al., in prep.) in GBHs from BLACKCAT
- testing wind explanation for the spin problem in the continuum-fitting method when L > 0.3L_{Edd} (You et al. 2016)
- study of accretion/ejection processes in Swift J1753.5-0127 (Rushton et al.)
- spin determination with relativistic reflection method (Parker et al. papers)

Observation of G2/DSO

• NIR (Valencia-S, Eckart, Zajacek, Parsa, et al. ApJ 2015, Shahzamanian, Eckart, Zajacek, Valencia-S. et al. A&A 2016)

Observation of G2/DSO

• Modelling in Zajacek, Karas, Eckart A&A 2014

Davies et al. 2011; Rosen, Krumholz, Ramirez-Ruiz, 2012, Eckart et al. 2014

DSO polarisation

Zajacek et al. A&A 2017

DSO as a young, supersonic star - model components

Final remarks

- StrongGravity (collaborative) project funded by EU:
 - enabled extended collaboration between our teams,
 - enabled more intensive interaction between scientist working in theory, modelling and observations,
 - supported research through funding of postdoc positions,
 - supported international collaboration
- EU support for such projects in space research decreased in last years (RIA)
- Other opportunities in e.g. European Training Networks (ETN) as part of the Innovative Training Networks (ITN) in Marie Skłodowska-Curie Actions of EU
 - however, these are not only in SPACE programme
 - heavily oriented to industry and applied research
 - main objective is training and acquiring skills