21st International Conference on General relativity and Gravitation, Columbia University, New York 10-15 July 2016

Accretion of gaseous clumps from the Galactic Centre Mini-spiral onto Milky Way's supermassive black hole

> Vladimir KARAS Astronomical Institute, Prague, Czech Republic

Devaky KUNNERIATH The North American ALMA Science Center, NRAO, Charlottesville, Virginia (VA)

Bozena CZERNY, Agata ROZANSKA, & Tek P. ADHIKARI Nicolaus Copernicus Astronomical Centre, Warsaw, Poland

SPITZER • INFRARED

Artist's picture of a galactic nucleus: stars passing through gaseous environment

ASCA View of Our Galactic Center: Remains of Past Activities in X-Rays?

Sgr A* past activity from its present X-ray emission

(a) Brightness distribution of the 6.4-keV line. Of the two bright regions, the northern bright spot (upper-left) is ated near to the Sgr B2 cloud; the other (middle), near the Radio Arc, appears to be associated with a recently covered molecular cloud (Lindqvist et al. 1995).

Koyama et al. (1996)

THE CENTER OF THE GALAXY IN THE RECENT PAST: A VIEW FROM GRANAT

Sunyaev et al. (1993)

4

Neutral Fe K emission line - continuum subtracted - 2000-2009 mosaic

0.00.00.0

54-00.0

6.28-6.53 keV image

Arches cluster

04400.0

Past activity of Sgr A* - decay of the X-ray lightcurve

Ryu et al. (2013)

Capelli et al. (2012)

Millimeter VLBI of the Galactic Center Sgr A*

Region of interest: The Mini-spiral

X-ray: NASA/CXC/UCLA (Li et al. 2013) Radio: NRAO/VLA

<u>Cold phase</u> (gas 3-21×10⁴ cm⁻³, 5000-13000 K, and dust ~300 K)

<u>Hot phase</u> (fully ionised gas, $n_e=18 \text{ cm}^{-3}$, $T_e=3.5 \text{ keV}$ at 1.5")

Region of interest: The Mini-spiral

8

Elementary accretion events from infalling clouds

'Standard' thin disk accretion: $dM/dt_{|(R)} \sim 6\pi R^{1/2} \delta(R^{1/2} v\Sigma) / \delta R$ (Lynden-Bell & Pringle 1974)

Superposition of elementary events:

 $dM/dt_{|(0)} \sim t^{-5/3} / t_{visc}$

(Zdziarski et al. 2009)

Multiple accretion events

Past activity of Sgr A*

(Czerny et al. 2013)

Triggering the accretion events: <u>thermal instability</u> in a two-phase medium

• Field (1965) - Radiatively heated plasma can be thermally unstable (cooler, dense matter coexists with hot medium in pressure equilibrium)

 $\lambda_{\rm F}$ = mean thermal conduction / total heating per volume \rightarrow (10⁻⁷T^{7/2} / $H_{\rm tot}$)^{1/2}

Clumps of size < $\lambda_F evaporate$

• Barai et al (2012) - Two-phase medium forms spontaneously.

Ionization parameter:

$$\Xi = P_{\rm rad} / P_{\rm gas} \rightarrow (L_{\rm central} + L_{\rm stars}) / (P_{\rm gas} c R^2)$$

• Moscibrodzka et al (2013): filaments break into cloudlets

Cooling time:

$$t_{cool} \sim E / L_{tot}$$
, $L_{tot} \sim n^2 T^{1/2}$

Colder clumps form filaments \rightarrow they become accreted faster \rightarrow enhanced accretion rate

<u>Method and parameters</u>

<u>Cloudy</u> photoionisation code to model the ISM in the GC

- calculate instability curves log(T) vs. $log(\Xi)$ for different luminosity states of Sgr A*,
- include the influence of *dust grains* on the onset of TI
- include the influence of *stellar radiation and winds*.

We consider

- clouds: different density and different distance
- accretion mode: $M_{dot} \sim m \times 10^{-9} M_{sun} \text{ yr}^{-1}$

Thermal instability - different states of luminosity (distance R=0.008pc from the center)

Thermal instability for different states of luminosity (R=0.008pc)

 $log(L_{bol} [erg/s]) = 37.57, 38.33, 39.06, 39.76, 40.61, 41.33$

Influence of dust: suppression of instability

Size of clouds

Thermal conduction limits the smallest size of the clouds (Rozanska et al. 2014).

• Four different curves: bolometric luminosity L_{bol}

- Radius of the yellow circles: Field length λ_F
- Mass of clouds M_c in units of Earth mass

Instability strips for two-phase medium within Bondi flow

The role of stellar radiation and wind (mechanical heating)

S-curves of Thermal Instability: Temperature vs. Ionisation parameter

<u>Only</u> the central source of irradiation

+ Including the stellar radiation by 6 Myr SED

 \rightarrow

+ Including the <u>stellar mechanical</u> <u>heating</u> by winds

Conclusions

 Current level of luminosity of Sgr A* not enough to drive the thermal instability

• For luminosity > 10³⁹ erg/s at distance ~ 0.008-0.2 pc, the thermal instability operates, *cold clumps can accrete*

- Cooling time-scales are long (~ hundreds years)
- Typical cloud size of 10^{14-15} cm, mass of ~10 M_{Earth}
- Influence of dust is small

Discussion slides: <u>Two-pha</u>se medium in Bondi flow around Sgr A*

Bondi accretion operates up to ~ 0.1pc from Sgr A*

Thermal instability for different states of luminosity (R=0.2pc)

 $log(L_{bol} [erg/s]) = 37.57, 38.33, 39.06, 39.76, 40.61, 41.33$

Past activity of Sgr A* – predictions for X-ray polarimetry

Molinari et al. (2011), Marin et al. (2014)

Past activity of Sgr A* – predictions for X-ray polarimetry

Table 1. Parameterization of the reflection nebulae, modeled with uniform-density, spherical clouds filled with cold, solar abundance matter.

Molecular cloud	Cloud radius (pc)	Projected distance ^a (pc)	Line of sight distance ^b (pc)	Offset ^c (pc)	Velocity ^{d} (km s ⁻¹)	Hydrogen column density (×10 ²² cm ⁻²)	Electron optical depth	References
Sgr B2	5	-100	-17	-4.0	60	80	0.5	E, I
Sgr B1	6	-79.1	-23	-6	-45	12.3	0.3	A, D, G
G0.11-0.11	3.7	-25	-17	-13	25	2	0.03	E, F
Bridge E	2.0	-21.6	-60	-1.3	55	9.6	0.07	B, E, F
Bridge D	1.6	-18.3	-60	0.5	55	13.2	0.09	B, E, F
Bridge B2	1.8	-16.3	-60	-1.5	55	12.3	0.08	B, E, F
MC2	1.8	-14	<-17	-2.6	-10	<2	0.36	C, E
MC1	1.8	-12	-50	1.3	-15	4	0.32	E
Sgr C3	6	50	-53	-12	60	8.7	<1	H, E
Sgr C2	4.7	66	58	-14	60	11.4	<1	H, E
Sgr C1	4.7	71	-74	-1.5	60	6.5	<1	H, E

Notes. ^(a) Positive = east of the Galactic center; ^(b) Positive = behind the Galactic plane (farther to us than Sgr A^{*}); ^(c) Positive = above the equatorial plane. ^(d) Positive = away from Earth.

References. A: An et al. (2013); B: Capelli et al. (2012); C: Clavel et al. (2013); D: Downes et al. (1980); E: Ponti et al. (2010); F: Ponti et al. (2014); G: Ryu et al. (2009); H: Ryu et al. (2013) and I: Sunyaev et al. (1993).

Marin et al. (2015)

Past activity of Sgr A* – predictions for X-ray polarimetry

/ ref

ES.

Table 2. Integrated 4-8 keV polarization degree *P* of the GC molecular clouds from the simulation with

on component (including neutral iron lines) and polarization position angle ψ of

	-	-				
Molecular cloud	P (%)	ψ(°)	<i>f</i> _R (%)	$P_{\rm exp.}$ (%)	$P_{\text{detect.}}$ (%)	$\psi_{\text{detect.}}$ (°)
Sgr B2	65.0	88.3	70.0	45.5	57.4 ± 4.4	83.3 ± 3.4
Sgr B1	76.9	84.4	52.6	40.5	40.4 ± 3.9	80.3 ± 3.3
G0.11-0.11	55.8	61.6	_	_	_	_
Bridge E	12.7	67.9	_	_	_	_
Bridge D	0.1	74.2	_	_	_	_
Bridge B2	15.8	77.8	_	_	_	_
MC2	25.8	73.8	_	_	_	_
MC1	0.1	77.5	_	_	_	_
Sgr C3	32.9	106.4	50.7	16.7	15.5 ± 2.4	109.0 ± 4.5
Sgr C2	34.9	99.1	63.0	22.0	17.9 ± 3.8	99.1 ± 5.6
Sgr C1	31.1	94.6	60.2	18.7	23.1 ± 3.3	98.1 ± 6.0

Notes. Polarization angles are defined with respect to Galactic north, with positive defined as west to north. The fraction of the total flux that is reflected f_R is computed from Ryu et al. (2009, 2013), allowing us to evaluate the diluted polarization signal $P_{exp.}$. Using Monte Carlo simulations associated with the GPD instrument (see text), we finally show estimations of the polarization degree $P_{detect.}$ and angle $\psi_{detect.}$ that a future polarimeter would detect. The empty cells correspond to clouds with too low X-ray luminosities to be observed within 3 Ms or with unestimated fractions of the reflected flux.

S-Stars and Sagittarius A*

Ν

Mini-Spiral: Northern Arm

IRS 1~

Ε

IRS 16 Stars

IRS 9

5" (0.2 pc)

IRS 7 IRS 3

- IRS 13

HKL composite NIR image GC group, University of Cologne

Mini-Spiral. Bar